The key to EndoA3’s effects appears to be balance, say the researchers.
Bai likened the competing nature of EndoA3’s two tasks to work-life balance: “If you are spending more time here [at work] you can do less at home. But if you’re spending more time at home, you can do less here.”
If more EndoA3 is sitting on the membrane, directing endocytosis and proliferation, there will be less EndoA3 in the cytoplasm to promote the cytoskeletal reorganization needed for the cell to migrate — and vice versa. Whether the balance will shift toward cell migration or proliferation will depend on what kind of signals the cell is receiving from its environment, and the constellation of mutations the cancer cell and EndoA3 have accumulated.
Much cancer research has focused on the molecular pathways that tumor cells use to turn genes on and off, Eisenman said.
“Here’s a mechanism that can go right around that,” he noted. Though alterations in how the EndoA3 gene is turned on could certainly alter its effects, “the signaling could be in the cytoplasm to a very large extent.”
Cells don’t move randomly; instead, their movement is guided by triggers from their environment. “Now there is a molecular link that we can study more, to see, can this link be generating coordination between extracellular signals and the way the cell moves?” Bai said.
Future directions
Many interesting questions, both basic and translational, remain to be explored, the scientists said.
First of all, it’s not clear how EndoA3-regulated endocytosis links up with proliferation and tumor growth. Nor is it clear exactly what role EndoA3 plays in the life cycle of a tumor. While they know EndoA3 can support proliferation and metastasis, the team would also like to know whether it can actually drive, rather than merely enhance, cancer development and progression.
“Is it involved in initiation [of cancer], is it involved in progression, is it involved in only the metastatic response?” Eisenman asked.
It remains to be seen how many other tumors beyond colon cancer rely on EndoA3 in the same way.
And because EndoA3 is not expressed in many healthy tissues, “targeting that could be a particular way to regulate certain cancer tissue development without general impact on other systems,” Bai speculated.
This study was funded by the National Institutes of Health.