Legionella’s unusual strategy for success
Levin and co-author Brian Goldspiel, then a Malik Lab technician and now a graduate student at the University of Pennsylvania, used a combination of genetic and biochemical studies to track down the molecule responsible for the death of bacteria that approach L. pneumophila too closely. Their discovery that the killer molecule was homogentisic acid, or HGA, was the first time this common byproduct of cell metabolism has been shown to have any bactericidal activity. Prior to this study, HGA was only thought to have beneficial effects on bacterial growth.
Counterintuitively, Levin and Goldspiel also found that L. pneumophila itself is sensitive to HGA produced by neighboring, genetically identical Legionella cells. But its sensitivity depended on its environmental conditions. In uncrowded conditions, when L. pneumophila cells have little to no contact with each other, the bug is sensitive to HGA. And in these conditions, it doesn’t produce any.
But it turns out that there’s safety in numbers. Levin found that when L. pneumophila finds itself cheek-by-jowl with genetically identical, or kin, cells, it resists HGA’s toxic effects. And it’s only under these safe, crowded conditions that L. pneumophila churns out HGA. Any single bacteria passing by, even other L. pneumophila, will be killed off by the HGA produced by a bacterial clump.
“It’s a very strange mode of determining of all the cells out there, which ones are the same as me — and so we should work together — and which ones are different, and so I want to kill you and take all your stuff,” said Levin.
The way bacteria typically sense how many genetically related kin are nearby is called quorum sensing. Levin tested the only quorum-sensing mechanism known in L. pneumophila, but it made no difference to the bacteria’s susceptibility to HGA.
This means, said Levin, “Either there’s another quorum-sensing mechanism, or there’s a totally separate way of sensing density that nobody knows about. Our discovery might be a handle to pull that out.”
Though Levin has yet to discover how L. pneumophila sense that their living conditions make HGA production safe, she’s keen to work it out.
Her postdoctoral mentor, Malik, added, “Tera did not embark on this project to discover a new antibacterial intervention strategy. Instead, she followed her intuition and initially surprising findings that Legionella may have a mechanism to police its surroundings. It led us to a possible new means by which many bacteria may count their neighbors and establish a “gated” community when the conditions are right.”