In order to study this process, Taylor worked closely with collaborators at Princeton University, Drs. Joshua Shaevitz and Benjamin Bratton. They needed to lay a lot of technical groundwork, including selecting the best way to use cell-wall curvature to determine where in the cell wall new components were being added. Taylor identified the curvature that characterized what she termed the helix’s minor axis, or the shortest helical path between the cell’s two ends (show in blue in the figure). The major axis, or the longest helical path (shown in red) has positive curvature. The minor path hugs an interior curve with negative curvature, while the major path traces an exterior curve.
Taylor used fluorescent molecules that could be incorporated into PG, either in the sugar or protein constituents, to tag where new PG synthesis occurred. She used a special type of microscopy, called structured illumination microscopy, to capture the glowing images in layers and computational methods to put these layers together to recreate the cells in three dimensions. This strategy was a big step forward, Salama said, as all previous work had been conducted on 2D images of bacterial cells. The 3D imaging allowed Taylor to get a better sense of the surface area where cell-wall components were being added.
Balance maintains the helix
Using the glowing PG-synthesis tags, Taylor looked at where new PG was being added to the cell walls. There were two main possibilities for this pattern: either PG would be added uniformly along the cell wall, or it would be added more in some areas and less in others. She saw that more new cell wall components were being added along both axes compared to areas in between. Although they’d considered the possibility that wall synthesis wouldn’t be uniform, they weren’t expecting to see it clustered along the shorter minor axis and the longer major axis.
“This was a really surprising result,” Taylor said. “Our most intuitive hypothesis was if there is heterogeneity with some synthesis, that we would see an increase [in PG incorporation] at the major axis because there's more area there.”
Adding new components to the shorter axis seemed like a recipe for quickly straightening the helix into a rod — but something else about the wall-synthesis process prevents this. Other bacteria use strategies that limit cell-wall building at these areas, but H. pylori takes a different tack. To figure out what that tack is, Taylor looked at two proteins linked to wall building in other bacteria. MreB, which rod-shaped bacteria use to direct wall-building to areas of negative curvature, is thought help straighten out divots in the cell wall. H. pylori relies on the other, CcmA, to maintain its helix. H. pylori cells with defective CcmA achieve only a gentle curve.
Taylor found that in H. pylori, MreB localizes to the negative curvature of the minor axis. CcmA appears to work to balance out MreB’s wall-building activities. It strongly prefers the positive curvature of H. pylori’s major axis on the opposite side of the cell. In cells with defective CcmA, cell-wall synthesis along the major axis is reduced.
“This is what we would expect if CcmA is helping to drive this synthesis at the major axis,” Taylor said.
The findings are consistent with H. pylori using CcmA to build enough cell wall along the major axis that it stays ahead of the cell wall being built along the minor axis, and maintains its helical shape, the researchers said.
Additionally, Taylor showed that H. pylori’s major axis is 70% longer than its minor axis.
“That’s one of the things that we actually measured for the first time in this paper,” Salama said. Theoretically, in a helix, the major axis should be longer, but exactly how much longer hadn’t previously been known for H. pylori.
Interplay between creation and destruction
There are still many questions about how H. pylori patterns its cell wall that remain unanswered.
“Cell shape is a summation of all of these activities. It’s what you're adding in, what you're taking out, what the structure is at various areas,” Taylor noted. She and Salama focused on cell-wall synthesis, though targeted removal of PG units could also help enforce the helical shape. The interplay between creation and destruction, how cell-wall-patterning proteins move around the bacterial cell, as well as exactly how CcmA promotes cell-wall synthesis, remain to be explored.
They’d also like to explore more deeply how cell shape contributes to H. pylori’s ability to colonize and survive in the stomach. Is it most important early on, when the bacterium is putting down roots, or does it play a role in helping the bug maintain the chronic infection?
Understanding how specific bacteria maintain their shape could have practical applications, Salama said. Antibiotics are already used to help prevent stomach cancer and ulcers by wiping out H. pylori — but they have downsides.
“Some of these antibiotics that target the cell wall wipe out lots of different bugs,” Salama said. “Whereas something that is specific for a bug like Helicobacter, which has this special shape … could [in theory] result in a less-broad, more-specific antibiotic.”