Life span and fat accumulation are independent in yeast
Beas’ goal was to untangle the metabolic pathways that lead to fat accumulation as yeast age. He genetically manipulated a wide array of genes to see which affected the yeast cells’ tendency to begin increasing their lipid content in middle age.
Through this, he first identified a gene, BNA2, that regulates the creation of NAD+, a cofactor involved in many metabolic reactions inside cells, from yeast to humans. It was a tantalizing hit: research by others has shown that NAD levels decline with age and suggested that increasing NAD+ levels could increase health span, the length of time an individual remains free of age-related diseases.
But the potential link between NAD, fat accumulation and life span quickly unraveled.
He created yeast that amped up their levels of BNA2. These yeast lived longer and didn’t accumulate much fat — but their NAD levels didn’t change.
“I was shocked,” Beas recalled. It didn’t make sense that the yeast lived longer without increasing their NAD levels.
Next, Beas began combining mutations of genes upstream and downstream of BNA2 to untangle the metabolic pathways that regulate lipid stockpiling and life span. He was able to find genes that affected lipid accumulation and life span independently — another surprise.
“I could find examples of cells where I can have [the yeast cells] accumulate fat but have extended lives,” Beas said. “I can also have cells with very little fat die sooner.”
Beas’ further work examining key metabolites suggests that the conundrum arises from the way yeast cells use glucose, or simple sugar. Glucose can fuel many a yeast cells’ metabolic processes.
“You have to use it to make energy for the cell, to make new cells, to replicate your DNA — all of that has to be powered by the sugar that comes in, or by the fat [stores],” Beas explained.
The sugar can be thought of as akin to a cadre of cars being carried on a ferry — once the ferry docks, the cars may travel the same road for a distance but quickly start turning off onto side roads with different destinations. In a cell, each of these side roads is a different metabolic process. This can explain why upregulating BNA2 increases life span while decreasing fat accumulation: sugar that generally would have gone down the road to become fat gets shunted into metabolic pathways that lead instead to increased longevity.
And NAD+ levels remain normal in cells with high BNA2, Beas believes, because this same sugar is getting rerouted to life span-enhancing pathways that branch off before the sugar gets turned into NAD. The extra sugar never arrives at this destination, and NAD+ levels remain unchanged.
“The ferry keeps coming in and delivering sugar. What do you do with it? [One road leads to] fat and the other one to NAD+. And something else [goes to] longevity. And that's what we're trying to figure out,” Beas said.
Fat protects against stress
After separating fat buildup and life span, Beas was left with a nagging question: Do the extra midlife lipids serve a purpose?
It turns out they do, at least for yeast. Beas exposed his genetically manipulated yeast to cold conditions — and received surprise No. 3. Fat protected them against stress: plump yeast survived, skinny yeast died.
Getting specific
There are many unanswered questions, Beas said. For one thing, he didn’t discover the sequence of metabolic reactions that lead to fat accumulation; he just knows that the metabolic pathway branches prior to NAD formation.
He’d also like to understand why, if the fat is so helpful, it only starts accruing in midlife. Why don’t young yeast need a buffer against stress? Or, if they have one, what prompts them to switch to fat later in life?
Beas would also like to get into the nitty-gritty of the interconnected metabolic pathways that regulate life span and health in yeast. If NAD isn’t affecting their life span, is there a specific metabolite that does?
All of these questions underlie Beas' overarching one: Is age-related fat always harmful? His yeast suggest it isn’t, it may not make much difference when yeast are living an easy life, but it appears that it provides a metabolic cushion when their lives take a nasty turn.
“So why does fat accumulate? Maybe it's to help you during stressful times when you're older,” Beas said, though he cautioned against extrapolating too far from yeast to humans.