Right now, the standard treatment for glioblastoma is a combination of surgery, radiation, and chemotherapy. There are few options when those fail, but Holland is cautiously optimistic for the future. He believes with an as-yet-to-be-determined combination of immunotherapy and precision medicine, brain cancer researchers may finally make some headway against this long intractable problem.
“For a long time this has been a very hopeless field. A lot of people who were in it were either idealists who were imagining somehow changing the world — or nihilists who knew they couldn’t. It’s been a very hard problem,” said Holland, who puts himself in the idealist camp. “But all that said, I think there actually is a crack in the door right now.”
Early days and unique challenges
Holland is quick to point out that nobody has yet shown that immunotherapy can hold a candle against glioblastoma. T-cell therapy, a treatment in which a patient’s own immune cells are engineered to recognize and attack their tumors and which is showing promise for certain blood cancer patients, is being used in some small, early-stage clinical trials in glioblastoma at some other research centers. But, even for blood cancers, it’s still early days for this experimental therapy.
Brain cancer, especially glioblastoma, poses a series of unique challenges to treatment, Holland said. Some solid tumors arise in organs that can be removed or transplanted, if the cancer is caught early enough. But obviously that doesn’t apply to the brain — “that’s who you are,” Holland said.
The blood-brain barrier, which keeps the brain and its associated fluid tightly isolated from the circulatory system, also poses a challenge — many drugs simply can’t access tumors. Glioblastoma is resistant even to those drugs that can get in and it’s also more resistant to radiation than even normal brain tissue is.
Finally, unlike some other brain tumors, glioblastoma is very difficult to completely remove surgically because it’s so diffuse in the brain.
“The tumor cells are like a puff of smoke in the room, or ants in the grass. They’re just everywhere,” Holland said.
Holland is hopeful, though, that his particular area of expertise — precision oncology — can lay the groundwork for better treatments for glioblastoma, as it may for any cancer. He’s leading the development of Hutch Integrated Data Repository and Archive, or HIDRA, a database to combine patients’ clinical information with the genetic information of their individual tumors. The ultimate goal of databanks like HIDRA and the data visualization tool Oncoscape is to better understand how a patient is likely to respond to a given treatment and to tailor their care accordingly, Holland said.
“It’s like a much more granular diagnosis,” he said.
Unfortunately, even if researchers better understood the molecular details of patients’ tumors, there are few treatment options. But one day there will be more alternatives, Holland said, and when that day comes, he believes the framework of precision medicine will help guide the testing and tailoring of those new treatments — be they immunotherapies or new drugs.