When they tested the effects of mutation, the researchers found it rendered the male flies sterile — tangled sperm and all — but only later in their five-week lifespan, or at higher than normal temperatures, implying that there was some kind of additive effect between the lowered activity of the energy-producing molecule and the stress of age or temperature, Patel said. It’s not yet clear how this mutation in such an essential part of the flies’ cells is affecting only sperm development, the researchers said. Through a series of rigorous fly health tests, they further showed that the mutation had no other ill effects on males and no negative effects on females at all.
Gender bias in laboratory research
Results like these point to the importance of studying both sexes in biological research, Malik said. In 2014, the National Institutes of Health took biomedical researchers to task for conducting the majority of their preclinical studies only on male animals — such studies could miss important clues on how women might react differently to new therapies.
It was a calling-out that seemed completely obvious to Malik. Much of his laboratory’s research is focused on the evolution that drives sexual dimorphism — the biological differences between males and females. If they hadn’t set out to understand how this particular mutation works in both sexes, they might never have grasped its true function, he said.
“If you looked only at males, you’d be like, yeah, this is a male-sterile mutation … If you looked only at females, you’d be like, this is totally uninteresting, not even worth looking at,” he said. “There is so much in biology that is sexually dimorphic in an interesting way that is also medically important.”
The researchers also had a hint that their results might eventually point to a new path for male fertility therapies. They found that the sterility-linked mutation only wreaked havoc in some types of fruit flies — when they introduced the mutant mitochondria into 12 different types of flies, eight of them remained perfectly fertile. This means that the nuclear genome has likely evolved to push back against this male-harming mutation, to suppress its negative effects.
The research team’s next step is to identify what that suppressing genetic factor is. If this fruit fly mutation is also linked to fertility problems in humans, the gene that can suppress those fertility problems could be a promising avenue to explore for new fertility treatments, the researchers said.
“The fact that nuclear suppressors exist suggests that there might be a way to intervene,” Malik said.
The study was funded by the National Institutes of Health, Howard Hughes Medical Institute and the Mathers Foundation.