Human microbiome reveals new anti-CRISPR
The problem with going anti-CRISPR hunting is that there’s very little to guide a researcher. Oftentimes when sorting through DNA sequences, scientists can guess at a gene’s function by comparing its sequence to other genes with known function.
“Unfortunately, with anti-CRISPRs there are no good ways of doing that because they typically don't look like anything we've seen before,” Forsberg explained. “They are these small little proteins that have no sequence or structural relationship with known things.”
So instead of searching by gene sequence, Forsberg searched by function. With the help of Malik Lab technician Danica Schmidtke and former lab technician Ishan Bhatt, Forsberg ran the screening process twice to further enrich for genes that protected DNA against CRISPR and confirm their anti-CRISPR activity. At least 10 DNA sequences showed up as potential anti-CRISPRs, and one from the fecal microbiome stood out. None had been discovered before.
Dubbed AcrIIA11 — Acr for anti-CRISPR, IIA to denote the Cas system it inhibited, and 11 for the 11th anti-CRISPR to fit these criteria — the standout anti-CRISPR comes from a virus that infects bacteria of the genus Clostridium. In part because Clostridium are oxygen-hating bacteria that are difficult to grow, AcrIIA11 would have been difficult to uncover using more conventional methods, Forsberg said.
AcrIIA11, Forsberg, and Malik found, counters a wide range of Cas9 systems. And it can block Cas9 action in mammalian cells, not just bacterial cells, as was shown through a collaboration with Dr. Ilya Finkelstein at the University of Texas. This surprised the team a bit — the Cas9 they used, the same one used in genome editing, came from Streptococcus, bacteria that are common in the oral, but not fecal, microbiome. Forsberg suspects that he found such a broad-acting anti-CRISPR because Clostridium uses a Cas9 that is very different from the one Forsberg used to screen his metagenomes, allowing him to uncover one that acts against several Cas9 types.
AcrIIA11 also doesn’t use the usual anti-CRISPR strategies against CRISPR-Cas9. Along with Fred Hutch colleagues Drs. Barry Stoddard and former Stoddard Lab member Brett Kaiser, Forsberg showed that AcrIIA11 works in a new way, one that they are still untangling. The finding highlights that, just as bacteria have evolved many strategies to combat viruses, viruses have evolved perhaps just as many to outmaneuver bacteria.
Uncharted possibilities
“Every year biology is discovering new bacterial defense strategies,” Malik said. “We’re at the stage when most defensive strategies are untapped.”
So far, every new anti-CRISPR discovered is new to biology — suggesting that there’s a lot of uncharted territory out there, he added.
Just as CRISPR-Cas9’s relevance to genome editing and potential disease fighting took years to understand, it will take time to reveal the potential applications of anti-CRISPRs.
One of the most obvious arguments for deepening our understanding of the arms race between phages and bacteria is the increasing problem of antibiotic resistance. We need improved strategies for dealing with disease-causing bacteria. One that’s gaining more attention is phage therapy, a century-old approach in which bacteriophages are used to treat bacterial infection.
“It's like an ecosystem down there,” Forsberg said of the gut microbiome. “You don't want to napalm the rainforest to get rid of just the bad bugs that you're interested in.”
Malik agreed, and noted that phage therapy could someday be a strategy with more precision. Once we better understand bacteria’s defense systems and how phages overcome them, we could potentially engineer phages to overcome specific bacteria with specific CRISPR-Cas systems.
In the meantime, Forsberg plans to further characterize the other anti-CRISPRs that showed up in his screening process. He is also continuing to examine how, exactly, AcrIIA11 works against CRISPR.
AcrIIA11 “is different and it's new. That's exciting and we're continuing to work on crossing the t's and dotting the i's,” he said.
Malik was more excited about the approach than even the findings.
“We are still not able to culture most of the bacteria that we have encountered in ecological niches like the human microbiome,” he said. “Being able to screen the activity of bacterial genes opens up an entirely new horizon of discovery of bacterial–phage interactions. It’s like reporting from the front lines of this ancient war.”