“I love the math and the challenge of having incomplete information and trying to use that incomplete information about what’s going on around you to make decisions. I see tons of parallels between that and what I do in my clinic every day,” he said. “It’s a beautiful game.”
Precision research
The functional genomics approach using patient derived tumor cells is a collaborative effort on a grand scale, Kemp said.
“This can’t be done in any one lab,” Kemp said. “To make this happen requires buy-in from clinicians, patients, researchers and computational scientists.”
Gadi and Méndez are oncologists, seeing patients with breast cancer and head and neck cancer respectively, as well as conducting clinical research. Together with Kemp and Dr. Carla Grandori, a former Fred Hutch cancer researcher, the team founded the spin-off biotech company SEngine Precision Medicine in 2015 to bring this targeted approach directly to patients to determine the best treatment option for their particular tumor.
For now, the work is still mainly in research mode. In its latest incarnation, the methodology uses live, patient-derived cancer cells in petri dishes and what are known as tumor “organoids,” 3-D clusters of tumor cells grown in the lab that mimic actual human cancers better than cancer “cell lines,” which are cancer cells that originally came from a patient but have spent so long growing and dividing in petri dishes that they bear little resemblance to the original cancer.
The reliance of much of cancer research on such cell lines is one of the reasons so many promising approaches to treatment fail to translate to actual clinical benefit, Gadi said.
“A lot of the drug discovery and trying to understand the genetic underpinnings of cancers have led to a lot of false leads,” he said. “You can spend $1 billion developing a drug and at the end of the day it doesn’t work, because it just didn’t matter in people’s cancers as opposed to this theoretical cell line.”
The tumor organoid method is still early stage and takes a lot of work to develop because each tumor type requires different methods, Gadi said, underscoring the importance of obtaining live tumor biopsies that can be grown in the lab to further perfect the method.
In a proof-of-concept test of their method, Grandori and SEngine scientists teamed up with researchers from Fred Hutch and the Englander Institute for Precision Medicine at Weill Cornell Medicine. The team recently completed a study, published online in the journal Cancer Discovery, that combined DNA sequencing and drug screening of tumor organoids developed from four patients’ tumors, two with late-stage uterine cancer and two with late-stage colon cancer.
In that study, the researchers tested 120 FDA-approved drugs against the four tumor organoids, and then used mouse avatar models of the patients’ tumors to see how the best hits from that screen fared in a living model of cancer. In the end, the study uncovered four combinations of different drugs that they predicted should work best for each of the four patients — all originally approved for use in different cancer types, such as breast or lung cancer. This new approach to precision medicine will be presented at the 2017 American Association for Cancer Research meeting, which starts this weekend in Washington D.C., by Kemp and Weill Cornell Medicine’s Dr. Mark Rubin on behalf of the group.
This type of precision oncology research is in early stages; its main purpose is to suggest new paths for clinical trials. That’s why the cancer genome sequencing part of the work is important, to find other patients whose tumors might respond similarly to the drug or drugs their organoid screens pull out.
For Kemp, who has had two parents die of cancer, one from colorectal and one from kidney cancer, this work is both deeply fulfilling and deeply frustrating. Even though their drug screens found a potential therapy much faster than older methods, one of the two colon cancer patients died while the study was ongoing.
“That frustrates the hell out of me,” Kemp said. “The only reason we couldn’t do this sooner is we lack the resources and manpower, not because we lack the technology.”