Stoddard and his team first captured the 3-D structure, atom by atom, of the yeast enzyme then re-engineered it to be more stable and to keep its shape at human body temperature.
The pro-drug strategy is coupled with what is known as a “suicide gene,” a form of gene therapy that delivers DNA bearing instructions coding for the enzyme selectively to cancer cells. The brain cancer-targeting drug built by Tocagen researchers, known as Toca 511, uses a special kind of virus to ferry the engineered enzyme gene to tumor cells. The virus only infects actively dividing cells — of which there are very few in the brain, other than cancerous cells. It’s also normally cleared by an active immune system, but tumors often suppress surrounding immune cells to evade detection — meaning the virus can remain in the brain in the area near the tumor.
The virus bearing a gene coding for the engineered yeast enzyme is injected into the tumor area of the brain during a patient’s surgery to remove the tumor — brain tumors, especially glioblastoma, are notoriously difficult to remove completely by surgery. The virus should, in theory, spread only to replicating tumor cells, bringing the enzyme gene along with it. Patients then take a harmless tablet of 5-FC, which the body will convert to the 5-FU chemo drug in cells bearing the engineered enzyme — i.e., the tumor cells.
The trial
The study, which was a Phase 1 clinical trial designed primarily to test the treatment’s safety, looked at Toca 511 in 43 patients with recurrent glioblastoma (or another aggressive brain cancer known as astrocytoma) from seven different sites around the U.S. Typically, patients with these cancers whose tumors have come back after treatment survive an average of just eight months, said Dr. Asha Das, a neuro-oncologist who heads clinical development at Tocagen and was one of the study authors. By comparison, the 43 patients in their study survived an average of nearly 14 months, she said.
It may not seem like a huge change, but for a disease with few alternatives when the standard treatments (surgery, radiation and chemotherapy) fail to work, it’s a step in the right direction. And there’s a hint that the therapies might work even better for a subset of the brain cancer patients, Das said. About 40 percent of the patients in the small trial were still alive two years past the start of the trial — compared to less than 10 percent for patients who received the standard treatment. (As all the patients in the Toca 511 trial received the drug, the researchers compared them to a control group of patients from a previous, larger clinical trial.)
Although the primary goal was to ensure the drug’s safety, “we were enormously excited to see this type of change,” said Das, who used to head the neuro-oncology program at Cedars-Sinai Medical Center in Los Angeles. “These patients have very few treatment options.”
The study looks like an interesting approach, said Fred Hutch neurobiologist Dr. Eric Holland, who specializes in glioblastoma. But it’s important to remember that Phase 1 studies are only designed to test the approach’s safety, Holland said, and larger studies are needed before a drug’s efficacy can be truly proven.
“The output of a Phase 1 trial, the metric of passing that trial, is safety,” Holland said. “You really don’t know about efficacy until you get to the Phase 2, where you’re powered to really know.”
Holland also pointed out that other research groups are also pursuing virus-based therapies for glioblastoma and, so far, they are all still in similarly early phases or have failed to pan out in larger studies. Tocagen is currently enrolling patients for a larger, Phase 2/3 study, Das said, that will compare the experimental drug to the standard of care in a total of 170 patients.
For now, Stoddard is thrilled by the path his engineered enzyme is on. His work — like that of many basic scientists — is fostered both by a sense of curiosity and an eye toward future applications of the research.
“Basic scientists can have a real role in fostering translation,” he said. “Sometimes, the most important types of tools for eventual clinical treatment come out of the most unexpected places.”