Both Myc family members flip the switch to drug resistance
Two scientists in MacPherson's lab teamed up to conduct the work. Dr. Eli Grunblatt, a former graduate student, and Dr. Nan Wu, a postdoctoral fellow, first looked at the role of Myc family member MYCN. They used genetic techniques to increase the amount of MYCN in a mouse model of small cell lung cancer. Excess MYCN made tumors develop more quickly and reduced the number of cancer-fighting immune cells inside them. Doses of chemotherapy that caused regression of tumors with normal MYCN levels had no effect on growth of MYCN-high tumors.
Grunblatt and MacPherson confirmed these results in patient-derived xenograft or PDX models, which use tumor tissue taken from patients and grown in mice. They genetically engineered samples from chemo-sensitive tumors to express high levels of one of two different Myc family members, MYCN and MYCL. Again, expression of either Myc family member flipped a biological switch. Unmodified tumors melted away in response to chemotherapy, but tumors with lots of either Myc family member did not.
It’s the one of the first times researchers have genetically manipulated tumor tissue used in PDX models to get a sense of how different genes contribute to chemotherapy response in a physiological environment, MacPherson said.
Finding MYCN’s vulnerability
Mutations that drive cancer often give tumor cells a growth and survival advantage over normal cells — but they can create new vulnerabilities, too. To see if MYCN creates this Achilles heel, Grunblatt and another student in the lab, Justin Norton, used CRISPR-based genetic tools to test how hundreds of different genes may contribute to the drug resistance seen in small cell lung tumor cells with high amounts of MYCN.
The researchers found that a gene that helps MYCN sidestep the cells’ usual protein-recycling system, called USP7, appeared to be key to its ability to promote drug resistance.
Grunblatt treated tumors with high levels of MYCN with an experimental small molecule that blocks USP7 activity.
“If we not only give chemotherapy [to the mice], but we also give the USP7 inhibitor, now that tumor melts away,” MacPherson said. “So we could re-sensitize the chemoresistant tumor to chemotherapy by bringing down the level of Myc-N.”
Further exploring small cell lung cancer biology
The findings suggest that blocking USP7, or other molecules that help MYCN promote drug resistance, has therapeutic potential, MacPherson said. RAPT Therapeutics, the company that provided the experimental drug that Grunblatt tested, is currently exploring the possibility of bringing it to the clinic.
In the meantime, MacPherson’s lab is extending their PDX model-based strategy of testing the effects of genes on tumors in a more physiological context. It will help them better understand how different genes change the biology of small cell tumors, which could help point toward new therapeutic avenues, he said. They’re also testing the potential roles that hundreds of different genes may play in drug resistance.
“The goal is to identify vulnerabilities associated with those [cancer] drivers and focus on the druggable vulnerabilities,” MacPherson said. “And then develop a pipeline to reversing chemoresistance in a driver-specific manner.”
This work was funded by the National Institutes of Health and the National Cancer Institute.